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In this note we give an example of a strictly convex, reflexive. smooth Banach
space which has a Chebyshev subspace M. such that the projection onto M is linear
and has norm equal to 2. Moreover. we give necessary and sufficient conditions on
a space so that every projection has norm less than a constant which is less
than 2. '[I 1995 Academic Press. Inc.

1. INTRODUCTION AND MAIN RESULTS

Let X be a normed linear space and M a subspace of X. We define
PM(x):= {YEM: Ilx- yll =d(x, M)} and IIPMII :=sup{llyll:YEPM(x),
Ilxll ~ l}. We trivially have IIPMII ~2 and it is well known that Xis a pre­
Hilbert space iff II PM II ~ I for every subspace M of X. In this paper, we
give necessary and sufficient conditions for the existence of a constant A< 2
such that liPM II ~ A for every subspace M.

In [2] Deutsch and Lambert gave an example of a Chebyshev subspace
M of qo, 1] such that PM is linear and liPMil = 2. In Section 2 we obtain
a projection with the same properties. However, the space is a strictly
convex, reflexive, smooth Banach space.

A uniformly non-square space (UNS) is a Banach space X such that there
exists a constant iX, 0 < iX < 1, satisfying Ilx - y II ~ 2a: or IIx + y II ~ 2iX for
every x, y E U(x) (where U(X) is the unit ball). A locally uniformly rotund
space (LUR) is a Banach space X such that if x, x" E U(X) and
Ilx + x" II ~ 2, then Ilx - x" II ---4 o.
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In [4] James proved that every UNS space is reflexive. The converse
is false (see the example in Section 2). If X is LUR then every Chebyshev
subspace M of X is an approximatively compact set. For other properties
of this space, see [I] and [4].

As usual, for I ~ p ~ en we let 1['(2) denote the linear space [R2 with the
I[,-norm.

THEOREM 1.1. X is a UNS space iff there exists a constant A< 2 such
that liPMII ~ Afor an.v sub,o,pace M of X.

Proof Assume X is a UNS space, XE U(X) and yEPM(X). As
X-yEU(X) we have Ilx-(x-y)II~2ex or Ilx+(x-y)I'~2ex. Thus
II y II ~ 2ex or II y II ~ ex + 1, and therefore IIPM II ~ ex + 1< 2.

Now suppose that X is not a UNS space. Then there exist XI" y" E U(X)
such that IIx,,::;:: y" II -> 2. Let e j , i = I, 2, be the canonical vectors of [R2, and
f" the linear functional of II (2) into X defined by I,(el) = x" and
I,(e 2 )=y". Using the inequality Ilu+vll-1 ~ Iltu+(l-t) vii, U, VE U(X),
o~ t ~ 1, we obtain

II(x, Y )11\ min{ Ilx" =+= y" II-I} ~ III,(x, Y)II ~ It(x, y' )111' (I)

Hence I(x, y )1,,:= III,(x, Y)II defines a norm on [R2 and I(x, Y )1,,->
II(x, y) Ill' If r" is a sequence of real positive numbers with r" i 2, as a conse­
quence of [2, Proposition 4.2] we get a sequence M" of Chebyshev
subspaces of I, (2) such that II PM" III = r". Since I, preserves the norm, it
follows from (I), the convergence of the norms 1·1" to the norm II· III' and
Kripke's algorithm [3, p. 118] that there exists a sequence K" of one
dimensional subspaces of X with II PKJ ~ nj(n + I) 1'", which is a contra­
diction. I

The following theorem gives sufficient conditions on M so that
IIPMII <2. It generalizes [2, Lemma 4.3].

THEOREM 1.2. Let M be an approximatively compact Chebyshev sub­
,o,pace of a normed linear .\pace X with codim M < en. Then II PM II < 2.

Proof Since M is an approximatively compact Chebyshev subspace,
PM is a continuous function and codim M < en implies that P,\/(O) is
boundedly compact, see [3, p. 168]. Suppose that there exist x"' IIx" II = I,
with IIPM (x,,)11--?2. Since x"-PM(X,,)EPM1(O),,U(X) we get a sub­
sequence nk such that X"k - P(X"k) -> X E p.~,' (0). Clearly Ilxll = 1, hence
d(x, M) = 1. On the other hand 1~ Ilx + P M(X"k )11 ~ Ilx + PM(X"k)­
x llk II + [(x llk II -> 1. Therefore (- PM(Xllk )) is a minimizing sequence of x.
Since the subspace Mis approximatively compact there exists a subsequence
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of ( -PM(X"k)) which converges to P M(X) = 0, but we have supposed that
IIPM(x"k ) II ...... 2 as k ->(X). I

Remark. The condition codim M < 00 cannot be removed in the
theorem as we shall show in Section 2.

2. AN EXAMPLE

In this section we present an example of a reflexive, strictly convex,
smooth Banach space with a Chebyshev subspace whose metric projection
is linear with norm equal to 2. We need to prove the following lemma.

LEMMA 2.1. Let p, I < p < OC, q = pj(p - I), and H the hyperplane in 1R 2

given by {(x, y): o.x + py = O}, where 11(0., P)lfq = I. Then

IIPHII = II(o.,P)llp 11(\a\q-l, IPlq-I)ll q.

Proof We use the following standard fact. If f is a linear functional
with Ilfll = I then M:= Kerf is Chebyshev iff there exists a unique e with
fie) = Ilell = I and the metric projection onto M is PM(x) = x - fix) e. In
our case, we have

lIPH(X, y) III' = II (x, y ) - (o.x + py )(sgn(o.) lal q-I, sgn(p) IPI q -I )11"

= 11(0., fJ)11" Isgn(p) IPlq-1 x -sgn(o.) jo.jq-I y I

~ lI(o.,fJ)ll p lI(jiXlq-l, IPlq-I)ll q II(x,Y)ll p

and the equality is obtained for x=sgn(fJ)IPI(q-I)' and y=
-sgn(iX) /o.I 1q - I

}'. I
We now consider a sequence of Banach spaces (S", 11·11,.) and a real

number p, 1 <p< oc. We denote by Pp(S,,) the set of all sequences (x,,)

such that X"ES" and II(x,,)II :=CL~~lllxnll~)IIP<oo. In [I, p. 35] it is
proved that (Pp(S,,), 11·11) is a Banach space and it is strictly convex
(reflexive) iff, for each fl, SIt is strictly convex (reflexive). Moreover, if every
SIt is reflexive the dual space (P" (S" )) * is isometric with Pq (S,n, where q
is the conjugate of p.

THEOREM 2.2. Let PIt be a sequence of real numbers with 1< P" < 00. If
p" ...... x or p" ...... I then there is a Chebyshev subspace S of Pp(lp,,(2)), such
that Ps is linear and II Ps II = 2.

Proo! Let (S", II· II"" ) be a sequence of subspace of 1R 2 and S := P" (S" ).
It is easy to show that Ps((X/I))=(Ps,.(X/I))' where P s" is the linear metric
projection of [R2 onto S,,; hence S is a Chebyshev subspace and Psis linear.
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Let xEIR 2 and (xn)EPpUp,,(2» be such that Xk=X and xn=O for n#-k.
Then IlPs((xn»11 = IlPs.(x)llpk' thus IIPsl1 ~ IIPsJ for all n.

Assume that P,,-+ 00. Let O<c5< 1, R= 1 +t5q, IJ..=R-1/q, and
f3 = i5 R -l/q; then II(!J.., f3)11 q = I and II(IX, f3)llp II( IIX\q-l, \f3l q- 1)1\ q =
R- 1(1 +i5P )I/p(1 +15q(q-I)I/q. The last expression tends to 2/(1 +15) as
P -+ 00. Putting 15n instead of 15 in the last expression, with 15n10, it follows
from Lemma 2.1 that there exists a subsequence nk and numbers IX b

13k such that IIPs")p,,.~[2/(I+15d]-1/k, where Sn.={(X,y):lXkX+
f3kY=O}. Finally, we define S={(xn)EPpUp,,(2)):xnkESnk and xj=O,
otherwise}. As liPsII ~ lIPS"k II, we obtain that liPsII = 2.

The case Pn -+ 1 follows analogously, setting <Inil.l
Remark. (I) As lp" (2) is strictly convex, reflexive space for each n, we

have that Pp Up,,(2» is a strictly convex, reflexive space. Moreover, since
(PpUp,,(2»))* = PqUq,,(2), where q" is the conjugate of Pn and PqUq,,(2) is
strictly convex, it follows that Pp Up,,(2)) is a smooth space [3, p. 106].

(2) As PpUp,,) is a LUR space [5, Theorem 1.2] and S is a
Chebyshev subspace, S is an approximatively compact set. Thus the
condition codim M < 00 cannot be removed in Theorem 1.2.
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