Note

A Note on Metric Projections*

FERNANDO MAZZONE AND HÉCTOR CUENYA

Departamento de Matemática, Facultad de Ciencias Exactas Fco. Quimica y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina

Communicated by Allan Pinkus

Received December 10, 1993; accepted in revised form April 4, 1994

In this note we give an example of a strictly convex, reflexive, smooth Banach space which has a Chebyshev subspace M, such that the projection onto M is linear and has norm equal to 2. Moreover, we give necessary and sufficient conditions on a space so that every projection has norm less than a constant which is less than 2. \bigcirc 1995 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULTS

Let X be a normed linear space and M a subspace of X. We define $P_M(x) := \{y \in M : ||x - y|| = d(x, M)\}$ and $||P_M|| := \sup\{||y|| : y \in P_M(x), ||x|| \le 1\}$. We trivially have $||P_M|| \le 2$ and it is well known that X is a pre-Hilbert space iff $||P_M|| \le 1$ for every subspace M of X. In this paper, we give necessary and sufficient conditions for the existence of a constant $\lambda < 2$ such that $||P_M|| \le \lambda$ for every subspace M.

In [2] Deutsch and Lambert gave an example of a Chebyshev subspace M of C[0, 1] such that P_M is linear and $||P_M|| = 2$. In Section 2 we obtain a projection with the same properties. However, the space is a strictly convex, reflexive, smooth Banach space.

A uniformly non-square space (UNS) is a Banach space X such that there exists a constant α , $0 < \alpha < 1$, satisfying $||x - y|| \le 2\alpha$ or $||x + y|| \le 2\alpha$ for every $x, y \in U(x)$ (where U(X) is the unit ball). A locally uniformly rotund space (LUR) is a Banach space X such that if $x, x_n \in U(X)$ and $||x + x_n|| \to 2$, then $||x - x_n|| \to 0$.

* This work was partially supported by CONICOR and Universidad Nacional de Río Cuarto.

425

0021-9045/95 \$6.00 Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. In [4] James proved that every UNS space is reflexive. The converse is false (see the example in Section 2). If X is LUR then every Chebyshev subspace M of X is an approximatively compact set. For other properties of this space, see [1] and [4].

As usual, for $1 \le p \le \infty$ we let $l_p(2)$ denote the linear space \mathbb{R}^2 with the l_p -norm.

THEOREM 1.1. X is a UNS space iff there exists a constant $\lambda < 2$ such that $||P_M|| \leq \lambda$ for any subspace M of X.

Proof. Assume X is a UNS space, $x \in U(X)$ and $y \in P_M(x)$. As $x - y \in U(X)$ we have $||x - (x - y)|| \le 2\alpha$ or $||x + (x - y)|| \le 2\alpha$. Thus $||y|| \le 2\alpha$ or $||y|| \le \alpha + 1$, and therefore $||P_M|| \le \alpha + 1 < 2$.

Now suppose that X is not a UNS space. Then there exist $x_n, y_n \in U(X)$ such that $||x_n \mp y_n|| \rightarrow 2$. Let e_i , i = 1, 2, be the canonical vectors of \mathbb{R}^2 , and f_n the linear functional of $l_1(2)$ into X defined by $f_n(e_1) = x_n$ and $f_n(e_2) = y_n$. Using the inequality $||u + v|| - 1 \le ||tu + (1 - t)v||$, $u, v \in U(X)$, $0 \le t \le 1$, we obtain

$$\|(x, y)\|_{1} \min\{\|x_{n} \neq y_{n}\| - 1\} \leq \|f_{n}(x, y)\| \leq \|(x, y)\|_{1}.$$
 (1)

Hence $|(x, y)|_n := ||f_n(x, y)||$ defines a norm on \mathbb{R}^2 and $|(x, y)|_n \rightarrow ||(x, y)||_1$. If r_n is a sequence of real positive numbers with $r_n \uparrow 2$, as a consequence of [2, Proposition 4.2] we get a sequence M_n of Chebyshev subspaces of $l_1(2)$ such that $||P_{M_n}||_1 = r_n$. Since f_n preserves the norm, it follows from (1), the convergence of the norms $|\cdot|_n$ to the norm $||\cdot||_1$, and Kripke's algorithm [3, p. 118] that there exists a sequence K_n of one dimensional subspaces of X with $||P_{K_n}|| \ge n/(n+1)r_n$, which is a contradiction.

The following theorem gives sufficient conditions on M so that $||P_M|| < 2$. It generalizes [2, Lemma 4.3].

THEOREM 1.2. Let M be an approximatively compact Chebyshev subspace of a normed linear space X with codim $M < \infty$. Then $||P_M|| < 2$.

Proof. Since *M* is an approximatively compact Chebyshev subspace, P_M is a continuous function and codim $M < \infty$ implies that $P_M^{-1}(0)$ is boundedly compact, see [3, p. 168]. Suppose that there exist x_n , $||x_n|| = 1$, with $||P_M(x_n)|| \rightarrow 2$. Since $x_n - P_M(x_n) \in P_M^{-1}(0) \cap U(X)$ we get a subsequence n_k such that $x_{n_k} - P(x_{n_k}) \rightarrow x \in P_M^{-1}(0)$. Clearly ||x|| = 1, hence d(x, M) = 1. On the other hand $1 \le ||x + P_M(x_{n_k})|| \le ||x + P_M(x_{n_k}) - x_{n_k}|| + ||x_{n_k}|| \rightarrow 1$. Therefore $(-P_M(x_{n_k}))$ is a minimizing sequence of x. Since the subspace M is approximatively compact there exists a subsequence

426

Remark. The condition $\operatorname{codim} M < \infty$ cannot be removed in the theorem as we shall show in Section 2.

2. AN EXAMPLE

In this section we present an example of a reflexive, strictly convex, smooth Banach space with a Chebyshev subspace whose metric projection is linear with norm equal to 2. We need to prove the following lemma.

LEMMA 2.1. Let p, 1 , <math>q = p/(p-1), and H the hyperplane in \mathbb{R}^2 given by $\{(x, y): \alpha x + \beta y = 0\}$, where $\|(\alpha, \beta)\|_q = 1$. Then

$$\|P_{H}\| = \|(\alpha, \beta)\|_{p} \|(|\alpha|^{q-1}, |\beta|^{q-1})\|_{q}.$$

Proof. We use the following standard fact. If f is a linear functional with ||f|| = 1 then M := Ker f is Chebyshev iff there exists a unique e with f(e) = ||e|| = 1 and the metric projection onto M is $P_M(x) = x - f(x) e$. In our case, we have

$$\begin{split} \|P_{H}(x, y)\|_{p} &= \|(x, y) - (\alpha x + \beta y)(\operatorname{sgn}(\alpha) \ |\alpha|^{q-1}, \operatorname{sgn}(\beta) \ |\beta|^{q-1})\|_{p} \\ &= \|(\alpha, \beta)\|_{p} \ |\operatorname{sgn}(\beta) \ |\beta|^{q-1} \ x - \operatorname{sgn}(\alpha) \ |\alpha|^{q-1} \ y \ | \\ &\leq \|(\alpha, \beta)\|_{p} \ \|(|\alpha|^{q-1}, |\beta|^{q-1})\|_{q} \ \|(x, y)\|_{p} \end{split}$$

and the equality is obtained for $x = \operatorname{sgn}(\beta) |\beta|^{(q-1)^2}$ and $y = -\operatorname{sgn}(\alpha) |\alpha|^{(q-1)^2}$.

We now consider a sequence of Banach spaces $(S_n, \|\cdot\|_n)$ and a real number p, $1 . We denote by <math>P_p(S_n)$ the set of all sequences (x_n) such that $x_n \in S_n$ and $\|(x_n)\| := (\sum_{n=1}^{\infty} \|x_n\|_n^p)^{1/p} < \infty$. In [1, p. 35] it is proved that $(P_p(S_n), \|\cdot\|)$ is a Banach space and it is strictly convex (reflexive) iff, for each n, S_n is strictly convex (reflexive). Moreover, if every S_n is reflexive the dual space $(P_p(S_n))^*$ is isometric with $P_q(S_n^*)$, where qis the conjugate of p.

THEOREM 2.2. Let p_n be a sequence of real numbers with $1 < p_n < \infty$. If $p_n \to \infty$ or $p_n \to 1$ then there is a Chebyshev subspace S of $P_p(l_{p_n}(2))$, such that P_S is linear and $||P_S|| = 2$.

Proof. Let $(S_n, \|\cdot\|_{p_n})$ be a sequence of subspace of \mathbb{R}^2 and $S := P_p(S_n)$. It is easy to show that $P_S((x_n)) = (P_{S_n}(x_n))$, where P_{S_n} is the linear metric projection of \mathbb{R}^2 onto S_n ; hence S is a Chebyshev subspace and P_S is linear. Assume that $p_n \to \infty$. Let $0 < \delta < 1$, $R = 1 + \delta^q$, $\alpha = R^{-1/q}$, and $\beta = \delta R^{-1/q}$; then $\|(\alpha, \beta)\|_q = 1$ and $\|(\alpha, \beta)\|_p \|(|\alpha|^{q-1}, |\beta|^{q-1})\|_q = R^{-1}(1+\delta^p)^{1/p} (1+\delta^{q(q-1)})^{1/q}$. The last expression tends to $2/(1+\delta)$ as $p \to \infty$. Putting δ_n instead of δ in the last expression, with $\delta_n \downarrow 0$, it follows from Lemma 2.1 that there exists a subsequence n_k and numbers α_k , β_k such that $\|P_{S_{n_k}}\|_{\rho_{n_k}} \ge [2/(1+\delta_k)] - 1/k$, where $S_{n_k} = \{(x, y) : \alpha_k x + \beta_k y = 0\}$. Finally, we define $S = \{(x_n) \in P_p(l_{p_n}(2)): x_{n_k} \in S_{n_k} \text{ and } x_j = 0$, otherwise}. As $\|P_S\| \ge \|P_{S_{n_k}}\|$, we obtain that $\|P_S\| = 2$. The case $p_n \to 1$ follows analogously, setting $\delta_n \uparrow 1$.

The case $p_n \rightarrow 1$ follows analogously, setting $o_n \mid 1$.

Remark. (1) As $l_{p_n}(2)$ is strictly convex, reflexive space for each *n*, we have that $P_p(l_{p_n}(2))$ is a strictly convex, reflexive space. Moreover, since $(P_p(l_{p_n}(2)))^* = P_q(l_{q_n}(2))$, where q_n is the conjugate of p_n and $P_q(l_{q_n}(2))$ is strictly convex, it follows that $P_p(l_{p_n}(2))$ is a smooth space [3, p. 106].

(2) As $P_p(l_{p_n})$ is a LUR space [5, Theorem 1.2] and S is a Chebyshev subspace, S is an approximatively compact set. Thus the condition codim $M < \infty$ cannot be removed in Theorem 1.2.

ACKNOWLEDGMENT

We thank the referees for their helpful remarks.

428

REFERENCES

- 1. M. M. DAY, "Normed Linear Spaces," Academic Press, New York, 1962.
- 2. F. DEUTSCH AND J. M. LAMBERT, On continuity of metric projection, J. Approx. Theory 29 (1980), 116-131.
- 3. R. B. HOLMES, "A Course on Optimization and Best Approximation," Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin/New York, 1972.
- 4. R. C. JAMES, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- 5. A. R. LOVAGLIA, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225-238.